Aniline hydrogenolysis on nickel: effects of surface hydrogen and surface structure

ثبت نشده
چکیده

Fluorescence yield near-edge spectroscopy (FYNES) above the carbon K edge and temperature programmed reaction spectroscopy (TPRS) have been used as the methods for characterizing the reactivity and structure of adsorbed aniline and aniline derived species on the Ni(100) and Ni(111) surfaces over an extended range of temperatures and hydrogen pressures. The Ni(100) surface shows appreciably higher hydrogenolysis activity towards adsorbed aniline than the Ni(111) surface. Hydrogenolysis of aniline on the Ni(100) surface results in benzene formation at 470 K, both in reactive hydrogen atmospheres and in vacuum. External hydrogen significantly enhances the hydrogenolysis activity for aniline on the Ni(100) surface. Based on spectroscopic evidence, we believe that the dominant aniline hydrogenolysis reaction is preceded by partial hydrogenation of the aromatic ring of aniline in the presence of 0.001 Torr of external hydrogen on the (100) surface. In contrast, very little adsorbed aniline undergoes hydrogen induced C-N bond activation on the Ni(111) surface for hydrogen pressures as high as 10 -7 Torr below 500 K. Thermal dehydrogenation of aniline dominates with increasing temperature on the Ni(111) surface, resulting in the formation of a previously observed polymeric layer which is stable up to 820 K. Aniline is adsorbed at a smaller angle relative to the Ni(111) surface than the Ni(100) surface at temperatures below the hydrogenolysis temperature. We believe that the proximity and strong g-interaction between the aromatic ring of the aniline and the surface is one major factor which controls the competition between dehydrogenation and hydrogen addition. In this case the result is a substantial enhancement of aniline dehydrogenation relative to hydrogenation on the Ni(111) surface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Science Letters Ethane Hydrogenolysis over Single Crystals of Nickel: Direct Detection of Structure Sensitivity *

Single crystal catalysts have been used to investigate ethane hydrogenolysis. The apparatus used in these studies allows for catalyst preparation and surface characterization in ultrahigh vacuum (UHV) with an in vacua transfer to a second UHV chamber designed for high pressure kinetic studies. Kinetic measurements on single crystals of nickel show the hydrogenolysis of ethane to be “structure s...

متن کامل

Dissociative Adsorption and Hydrogenolysis of Ethane over Clean and Ni-Covered

The hydrogenolysis of ethane has been investigated on clean and Ni-covered Pt( 1 1 1) at reactant partial pressures between 0.5 and 4 Torr of ethane and between 80 and 270 Torr of hydrogen and for surface temperatures from 550 to 640 K. On clean Pt( 1 1 1) the hydrogenolysis reaction proceeds with an activation energy of 36.6 kcal/mol and reaction orders in C2H6 and H2 pressures of 1 and -1.8, ...

متن کامل

Optimization of Constituents of (Ni, MO, Cu)/Kieselguhr Catalyst by Response Surface Methodology for Glycerol Production by Hydrogenolysis of Sucrose

Sucrose hydrogenolysis is industrially important for the production of polyols. To provide high glycerol yield under milder reaction conditions, a nickel catalyst promoted by Molybdenum and copper supported on kieselguhr was synthesized and optimized using Response Surface Methodology. A 3X5 experimental design has been adopted to study the effect of these constituents. A linear second-order mo...

متن کامل

Dehydrogenation of Propane to Propylene over Supported Model Ni–Au Catalysts

Hydrogenolysis and dehydrogenation of propane were studied over model nickel–gold catalysts. The supported model Ni–Au catalysts were prepared by depositing Ni and Au onto a planar silica film. Infrared reflection absorption spectroscopic data showed that isolated Ni sites appeared and became dominant on the surface with the addition of Au to Ni. For the conversion of propane in the presence of...

متن کامل

Catalytic Decomposition of Methane and Ethylene into the Carbon and Hydrogen

The role of nickel as catalyst on the conversion of methane and ethylene in a gas phase flow reactor in the absence of oxygen is studied. In this study, nickel in its different forms is used as catalyst. The role of pressure, flow rate, and temperature on the conversion of feed gases is investigated. The experiments have been carried out in the presence and absence of the catalysts to measure t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004